YAMBO_GW_PWmat

2019.02.12

support@pwmat.com

Introduction

YAMBO is a open source package for GW, BSE and TDDFT calculations. It is a CPU code. <u>http://www.yambo-code.org</u>

reference: A. Marini, C. Hogan, M. Gruning, D. Varsano, "Yambo: An ab initio tool for excited state calculaitons", Comp. Phys. Comm. 180, 1392 (2009).

In this module, we explain how to run YAMBO to get GW quasi-particle energy based on PWmat DFT results.

tar zxvf YAMBO.tar.gz cd YAMBO/yambo-4.3.0 module load intel/2016 #加载intel环境 . yambo.sh make yambo interfaces

For standard Mstation user, please copy executable: yambo and p2y To a directory in your path (e.g., /usr/local/bin).

Do: > which yambo, > which p2y Make sure they can be found in your path

The basic steps to run PWmat-YAMBO:

✤ (1) Run Pwmat calculations:

This includes: JOB=SCF calculation with PWSCF_OUTPUT=T JOB=NONSCF for larger number of kpoints and band with PWSCF_OUTPUT=T (to generate prefix.save).

- ✤ (2) Run p2y: to convert the PWscf style file (in prefix.save) to YAMBO file (in a file called SAVE) (quick)
- ✤ (3) Run yambo: for initialization (quick)
- ♦ (4) Run yambo –F yambo_gw.in: for real yambo run (main yambo run, can be slow)
- ✤ (5) Check the results in GW subdirectory

Step 1: PWmat run

This is to generate the DFT wave function and eigen energies for YAMBO GW calculation

(a) First do a SCF PWmat calculation.

1	4		1
2	IN.ATOM	=	atom.config
3	JOB	=	SCF
4	IN.PSP1	=	31-Ga.LDA.fhi.UPF
5	IN.PSP2	=	33-As.LDA.fhi.UPF
6	Ecut	=	40.00
7	MP_N123	=	666000
8	PWSCF_OUT	PUT	Г = Т

1		2						
2	Lattice	vector						
3	2	.825	2.825		0.00			
4	2	.825	0.0		2.825	5		
5	0	.0	2.825		2.825	5		
6	Positio	n, move	x, move	y,	move_z			
7	31	0.000	0.000		0.000	1	1	1
8	33	0.250	0.250		0.250	1	1	1

(b) Copy out.vr to in.vr, edit etot.input, do a NONSCF PWmat calculation

1	4	1	1
2	IN.ATOM	=	atom.config
3	JOB	=	NONSCF
4	IN.PSP1	=	31-Ga.LDA.fhi.UPF
5	IN.PSP2	=	33-As.LDA.fhi.UPF
6	Ecut	=	40.0
7	MP_N123	=	6 6 6 0 0 0
8	num_band	=	300
9	IN.VR	=	Т
10	PWSCF_OUT	[PU]	T = T
1 1			

Important: larger number of num_band possibly larger MP_N123 PWSCF_OUTPUT=T

It will generate: ./prefix.save diretory

Step 2: run p2y

>cd prefix.save

>copy the xxxx.UPF to prefix.save (>cp ./*.UPF .)

(a) Inside prefix.save, there should be a file called: data-file.xml

(b) Inside prefix.save, run: >p2y -F data-file.xml it will generate a directory: SAVE

31-Ga.LDA.fhi.UPF	gvectors.dat	input.restart	K00005	K00010	K00015	r_setup_03
33-As.LDA.fhi.UPF	gw	K00001	K00006	K00011	K00016	SAVE
charge-density.xml	input.bands	K00002	K00007	K00012	r_setup	yambo_gw.in
data-file.xml	input.dos	K00003	K00008	K00013	r_setup_01	ypp.in
DOC_QE_COMPATABILITY	input.pdos	K00004	K00009	K00014	r_setup_02	
[weile@mstation prefi	x.save]\$					

The prefix.save directory might look like this (without gw)

The screen print out after: >p2y -F data-file.xml

(>	::	Electrons :	8.000000
(>	::	Temperature [ev]:	0.9500E-3
(>	::	Lattice factors [a.u.]:	5.338476 5.338476 5.338476
(>	::	K-points :	16
(>	::	Bands :	300
(>	::	Spinor components :	1
(>	::	Spin polarizations :	1
(>	::	Spin orbit coupling :	no
(>	::	Symmetries [spatial]:	24
(>	::	[T-rev]:	yes
(>	::	Max WF components :	1315
(>	::	RL vectors (WF):	1315
(>	::	RL vectors (CHARGE):	3695
(>	::	XC potential :	Slater exchange(X)+Perdew & Zunger(C)
(>	::	Atomic species :	2
(>	::	Max atoms/species :	1
(>	==]	DB1 (Gvecs and more)	
(>	•••	Database done	
(>	==]	DB2 (wavefunctions)	
(>	[p2]	y] wfc_io ##############	################################= [100%](E)(X) done ==
(>	==]	DB3 (PseudoPotential)	. done ==
(01s>	==	P2Y completed ==	
(01s>[wei.	le@mstation prefix.save]	

Step 3: run yambo (initialization)

Screen printout

initialization

after >yambo for

>Stay in the prefix.save directory

>Run: >yambo

It will do yambo initialization. Note, in the prefix.save, you cannot have a file called yambo.in, otherwise it will read this file, and cause problem!

Step 4: run yambo

>Stay in the prefix.save directory >Edit file: yambo_gw.in

1	em1d		# [R Xd] Dynamical Inverse Dielectric Matrix
2	ppa		# [R Xp] Plasmon Pole Approximation
3	HF and locXC		# [R XX] Hartree-Fock Self-energy and Vxc
4	gw0		# [R GW] GoWo Quasiparticle energy levels
5	ElecTemp= 0.000000	eV	# Electronic Temperature
6	BoseTemp= 0.000000	eV	# Bosonic Temperature
7	FFTGvecs= 1000	RL	# [FFT] Plane-waves number for wave function
8	X_Threads = 1		# [PARALLEL] openMP thread is 1 for HF exchange calc.
9	DIP_Threads = 1		# [PARALLEL] openMP thread is 1 for polarization calc.
10	SE_Threads = 1		<pre># [PARALLEL] openMP thread is 1 for self-energy calc.</pre>
11	EXXRLvcs= 30	Ry	<pre># [XX] RL components for HF exchange calculation</pre>
12	% BndsRnXp		
13	1 300		<pre># [Xp] Polarization function bands</pre>
14	96		
15	NGsBlkXp= 10	Ry	# [Xp] PW for dielectric, unit Ry, or RL (< FFTGvecs)
16	% LongDrXp		
17	1.000 0.000 0.000		<pre># [Xp] [cc] Electric Field direction for q=0,k=0 point</pre>
18	%		
19	PPAPntXp= 27.21138	eV	# [Xp] PPA imaginary energy
20	% GbndRnge		
21	1 300		# [GW] bands range for Green's function
22	%		
23	GDamping= 0.10000	eV	# [GW] G[W] damping
24	dScStep= 0.10000	eV	# [GW] Energy step to evaluate Z factors
25	DysSolver= "n"		# [GW] Dyson Equation solver ("n","s","g")
26	%QPkrange		# [GW] QP generalized Kpoint/Band indices to evaluate the energy
27	1 16 1 5		

Explanation of the yambo_gw.in file

Meaning of the variables can be found in: <u>http://www.yambo-code.org/input_file/vars/</u> Check that site for more options

- ✤ em1d: please keep
- ppa: plasmon pole approximation of the dielectric constant
- ✤ HF_and_locXC: please keep
- ✤ gw0: g0w0 calculation
- ✤ X_threads, DIP_Threads, SE_Threads=1, for openMP calc., please keep
- FFTGvecs: the PW number for wavefunction in G. You can check the PW number in REPORT. FFTGvecs can be smaller (e.g, a factor of 2) than the one in REPORT
- NGsBlkXp: Xp means plasmon pole. The PW cutoff used for dielectric constant calculations. In terms of PW number, should be < FFTGvecs. This Ecut can be significantly smaller than the Ecut in PWmat calc. Suggest: ~ 6-10 Ry.
- BndsRnxp: the band index for polarization calculation (can be large, e.g. a few hundreds)
- ✤ GbndRnge: the band index used in the G calculation. (can be smaller than BndsRnxp).
- Qpkrange: "1 | kpt|1 |nband|": the kpoint and band index for GW energy evaluation

Note: the computer time might steeply depend on: FFTGvecs, NGsBlkXp, BandsRnxp, GbndRnge

Run YAMBO

Run yambo >mpirun -np 4 yambo -F yambo_gw.in -J gw -C gw &

✤ Note, in the directory, there should have no gw directory from previous run.

- The yambo_gw.in is the input file.
- We are using 4 processors for MPI run (in yambo_gw.in, there is no need to write this 4)
- Using >top to check the running of yambo (it is a CPU code).

After the run, it will generate directory: gw.

In gw, we have: o-gw.qp (band file), r-gw_em1d_ppa_HF_and_locXC_gw0 (detail file)

Step 5: Check the result

Check File: r-gw_em1d_ppa_HF_and_locXC_gw0, inside gw directory

631	QP [eV] @ K [1] (iku): 0.00	0.00 0.	90
632	B=1 Eo=-12.72 E=-12.70 E-Eo=	0.02 Re(Z)=0.4	4 Im(Z)=0.1293E-2 nlXC=-17.55 lXC=-10.79 So= 6.810
633	B=2 Eo= -0.00 E= -0.47 E-Eo=	-0.47 Re(Z)=0.7	9 Im(Z)=1554E-2 nlXC=-12.48 lXC=-11.25 So=0.6336
634	B=3 Eo= -0.00 E= -0.47 E-Eo=	-0.47 Re(Z)=0.7	9 Im(Z)=1554E-2 nlXC=-12.48 lXC=-11.25 So=0.6336
635	B=4 Eo= 0.00 E= -0.47 E-Eo=	-0.47 Re(Z)=0.7	9 Im(Z)=1554E-2 nlXC=-12.48 lXC=-11.25 So=0.6335
636	B=5 Eo= 0.52 E= 0.70 E-Eo=	0.18 Re(Z)=0.7	9 Im(Z)=1493E-2 nlXC=-6.858 lXC=-10.31 So=-3.224

This means, for kpt=0,0,0, for the band 1-5, The LDA energy is Eo, the GW energy is E. So, in this case, the LDA band gap is 0.52, and the GW band gap is: 0.70-(-0.47)=1.17. It also give the Z (the GW renormalization factor).

Check File: o-gw.qp, inside gw directory

35 #	K-point	Band	Eo	E-Eo	Sc Eo
36 #					
37	1.00000	1.00000	-12.71574	0.01897	6.80999
38	1.000	2.000	8110E-6	4695	0.6336
39	1.000	3.000	5069E-6	4695	0.6336
40	1.000000	4.000000	0.000000	-0.469506	0.633550
41	1.000000	5.000000	0.515242	0.181600	-3.223620
42	2.00000	1.00000	-12.42093	-0.03513	6.59294
43	2.000000	2.000000	-2.741699	-0.440705	1.347039
44	2.000000	3.000000	-0.376436	-0.470224	0.730130
45	2.000000	4.000000	-0.376435	-0.470209	0.730141
46	2.000000	5.000000	1.645571	0.144969	-3.457332

Note, it only gives E-E0 The same results as in the Above r-gw_xxxx file.